首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  国内免费   1篇
大气科学   1篇
地球物理   4篇
地质学   5篇
天文学   4篇
自然地理   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2004年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有17条查询结果,搜索用时 328 毫秒
1.
The attenuation of ground‐penetrating radar (GPR) energy in the subsurface decreases and shifts the amplitude spectrum of the radar pulse to lower frequencies (absorption) with increasing traveltime and causes also a distortion of wavelet phase (dispersion). The attenuation is often expressed by the quality factor Q. For GPR studies, Q can be estimated from the ratio of the real part to the imaginary part of the dielectric permittivity. We consider a complex power function of frequency for the dielectric permittivity, and show that this dielectric response corresponds to a frequency‐independent‐Q or simply a constant‐Q model. The phase velocity (dispersion relationship) and the absorption coefficient of electromagnetic waves also obey a frequency power law. This approach is easy to use in the frequency domain and the wave propagation can be described by two parameters only, for example Q and the phase velocity at an arbitrary reference frequency. This simplicity makes it practical for any inversion technique. Furthermore, by using the Hilbert transform relating the velocity and the absorption coefficient (which obeys a frequency power law), we find the same dispersion relationship for the phase velocity. Both approaches are valid for a constant value of Q over a restricted frequency‐bandwidth, and are applicable in a material that is assumed to have no instantaneous dielectric response. Many GPR profiles acquired in a dry aeolian environment have shown a strong reflectivity inside dunes. Changes in water content are believed to be the origin of this reflectivity. We model the radar reflections from the bottom of a dry aeolian dune using the 1D wavelet modelling method. We discuss the choice of the reference wavelet in this modelling approach. A trial‐and‐error match of modelled and observed data was performed to estimate the optimum set of parameters characterizing the materials composing the site. Additionally, by combining the complex refractive index method (CRIM) and/or Topp equations for the bulk permittivity (dielectric constant) of moist sandy soils with a frequency power law for the dielectric response, we introduce them into the expression for the reflection coefficient. Using this method, we can estimate the water content and explain its effect on the reflection coefficient and on wavelet modelling.  相似文献   
2.
In this paper, we investigate spherically symmetric perfect fluid gravitational collapse in metric f(R) gravity. We take non-static spherically symmetric metric in the interior region and static spherically symmetric metric in the exterior region of a star. The junction conditions between interior and exterior spacetimes are derived. The field equations in f(R) theory are solved using the assumption of constant Ricci scalar. Inserting their solution into junction conditions, the gravitational mass is found. Further, the apparent horizons and their time of formation is discussed. We conclude that the constant scalar curvature term f(R 0) acts as a source of repulsive force and thus slows down the collapse of matter. The comparison with the corresponding results available in general relativity indicates that f(R 0) plays the role of the cosmological constant.  相似文献   
3.
4.
5.
Most ground-penetrating radar (GPR) measurements are performed on nearly flat areas. If strongly dipping reflections and/or diffractions are present in the GPR data, a classical migration-processing step is needed in order to determine the geometries of shallow structures. Nevertheless, a standard migration routine is not suitable for GPR data collected on areas showing a variable and large topographic relief. To take into account topographic variations, the GPR data are, in general, corrected by applying static shifts instead of using an appropriate topographic migration that would place the reflectors at their correct locations with the right dip angle. In this article, we present an overview of Kirchhoff's migration and show the importance of topographic migration in the case where the depth of the target structures is of the same order as the relief variations. Examples of synthetic and real GPR data are shown to illustrate the efficiency of the topographic migration.  相似文献   
6.
Ground penetrating radar (GPR) is a non-destructive method which, over the past 10 years, has been successfully used not only to estimate the water content of soil, but also to detect and monitor the infiltration of pollutants on sites contaminated by light non-aqueous phase liquids (LNAPL). We represented a model water table aquifer (72 cm depth) by injecting water into a sandbox that also contains several buried objects. The GPR measurements were carried out with shielded antennae of 900 and 1200 MHz, respectively, for common mid point (CMP) and constant offset (CO) profiles. We extended the work reported by Loeffler and Bano by injecting 100 L of diesel fuel (LNAPL) from the top of the sandbox. We used the same acquisition procedure and the same profile configuration as before fuel injection. The GPR data acquired on the polluted sand did not show any clear reflections from the plume pollution; nevertheless, travel times are very strongly affected by the presence of the fuel and the main changes are on the velocity anomalies. We can notice that the reflection from the bottom of the sandbox, which is recorded at a constant time when no fuel is present, is deformed by the pollution. The area close to the fuel injection point is characterized by a higher velocity than the area situated further away. The area farther away from the injection point shows a low velocity anomaly which indicates an increase in travel time. It seems that pore water has been replaced by fuel as a result of a lateral flow. We also use finite-difference time-domain (FDTD) numerical GPR modelling in combination with dielectric property mixing models to estimate the volume and the physical characteristics of the contaminated sand.  相似文献   
7.
In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI 0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at [(t)\tilde]=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as t→∞ in both of these solutions.  相似文献   
8.
We consider a collapsing sphere and discuss its evolution under the vanishing expansion scalar in the framework of f(R) gravity. The fluid is assumed to be locally anisotropic which evolves adiabatically. To study the dynamics of the collapsing fluid, Newtonian and post Newtonian regimes are taken into account. The field equations are investigated for a well-known f(R) model of the form R+δR 2 admitting Schwarzschild solution. The perturbation scheme is used on the dynamical equations to explore the instability conditions of expansionfree fluid evolution. We conclude that instability conditions depend upon pressure anisotropy, energy density and some constraints arising from this theory.  相似文献   
9.
The concentrations of PM10, PM2.5 and their water-soluble ionic species were determined for the samples collected during January to December, 2007 at New Delhi (28.63° N, 77.18° E), India. The annual mean PM10 and PM2.5 concentrations (± standard deviation) were about 219 (± 84) and 97 (±56) μgm−3 respectively, about twice the prescribed Indian National Ambient Air Quality Standards values. The monthly average ratio of PM2.5/PM10 varied between 0.18 (June) and 0.86 (February) with an annual mean of ∼0.48 (±0.2), suggesting the dominance of coarser in summer and fine size particles in winter. The difference between the concentrations of PM10 and PM2.5, is deemed as the contribution of the coarse fraction (PM10−2.5). The analyzed coarse fractions mainly composed of secondary inorganic aerosols species (16.0 μgm−3, 13.07%), mineral matter (12.32 μgm−3, 10.06%) and salt particles (4.92 μgm−3, 4.02%). PM2.5 are mainly made up of undetermined fractions (39.46 μgm−3, 40.9%), secondary inorganic aerosols (26.15 μgm−3, 27.1%), salt aerosols (22.48 μgm−3, 23.3%) and mineral matter (8.41 μgm−3, 8.7%). The black carbon aerosols concentrations measured at a nearby (∼300 m) location to aerosol sampling site, registered an annual mean of ∼14 (±12) μgm−3, which is significantly large compared to those observed at other locations in India. The source identifications are made for the ionic species in PM10 and PM2.5. The results are discussed by way of correlations and factor analyses. The significant correlations of Cl, SO42−, K+, Na+, Ca2+, NO3 and Mg2+ with PM2.5 on one hand and Mg2+ with PM10 on the other suggest the dominance of anthropogenic and soil origin aerosols in Delhi.  相似文献   
10.
In this paper, we formulate the gravitational wave equations in the hybrid metric-Palatini gravity and solve these equations to find the polarization states. This newly proposed theory is very successful in explaining the observed phenomenology based on the hybrid combination of Einstein Hilbert action and Palatini formalism of \(f(R)\) gravity. We compare the obtained results of gravitational polarized modes with the existing results in the original approaches of the hybrid combination. The difference in the results is due to the coupling of the Ricci scalar with the trace of the energy momentum tensor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号